
Applying Mobile Agent in Parallel Computing                                             

for Solving Numerical Equations 
 

 

Nay Lin Soe, Ei The` Phyu 

Computer University (Taung-Ngu) 

naylinsoe2007@gmail.com, eithephyu@gmail.com 

 
 

 

Abstract 
 

Mobile Agent technology has the ability to travel 

from host to host in different or same network. 

Mobile Agents can migrate on themselves, their 

program and their state across the network and can 

execute the process at remote site. It motivates force 

in reducing network traffic and operates 

asynchronously and autonomously of the process. 

For these reason, Mobile Agent has been an effective 

choice for parallel and distributed computing. This 

paper presents the usage of Mobile Agent in parallel 

computing for solving the numerical problem of 

equations such as Gauss Jordan Iteration. Master-

worker design of mobile agent will be used in solving 

the system of equations in parallel. The master agent 

will send a number of worker agents to different 

processors, calculate in parallel and will return the 

partial result to the host site after solving them. After 

all calculations, the master agent will produce the 

final result. 
 

Keywords: Mobile agent, master-worker design, 

parallel and distributed computing 
 

1. Introduction 
 

Rapid development of computing technology 

increasingly relies on the network. Mobile agent 

technology is a new networking technology that deals 

with both form of logical and physical mobility.  

Distributed computing is more general and 

universal than parallel computing. The distinction is 

subtle but important. Parallelism is restricted form of 

distributed computing. Parallel computing is 

distributed computing, where the entire system is 

devoted to solving a single problem in the shortest 

time possible. Thus, parallel computers have 

optimized performance. Distributed computing is 

more general and encompasses other forms of 

optimization. Parallel computation involves dividing 

a problem into parts in which separate processors 

perform the computational of the parts.  

Mobile Agent Technology offers a new 

computing paradigm in which a program, in the form 

of an intelligent software agent can migrate 

themselves, their program and their state across the 

network and execute the process at remote site. 

Mobile Agents are an effective choice for many 

application for several reasons [6], including 

improvement in latency and bandwidth to network 

disconnection [3]. The driving force motivating the 

use of mobile agents in parallel and distributed 

computing is twofold. First, mobile agents provide an 

efficient, flexible and asynchronous method for 

searching for information or services in rapidly 

evolving networks: mobile agents are launched into 

the unstructured network and roam around to gather 

information or make other computations. Second, 

mobile agents support intermittent connectivity, slow 

networks, and lightweight devices. This second 

property makes the use of mobile agents very 

attractive [3]. The purpose of this study is to provide 

a comprehensive parallel computation of mobile 

agent for calculation of some numerical problems. 

The proposed Mobile Agent Technology (MAT) 

is suitable computing platform for parallel 

computation models such as embarrassingly and 

pipelined models.  The pipelined model has to send 

the data back and forth between two agents. This 

communication cost increases the execution timings. 

The embarrassingly model needs no communication 

between agents. Therefore, there was no problem as 

the data size increases or the number of worker 

increases. The mobile agent performs the best in this 

embarrassingly parallel computing model. Therefore, 

this paper emphasizes the embarrassingly model in 

parallel and distributed computing through the use of 

parallelisms.  
 

2. Related Works 
        

 There has been an increasing amount of research 

activities to exploit mobile agents to support 

distributed computing. The ASDK framework is a 

lightweight mobile agent technology from IBM's 

Tokyo Research Laboratory. With aglets, it's 

straightforward to develop standalone distributed 

applications that are independent of large-scale 

application server frameworks. That is, application 

mailto:naylinsoe2007@gmail.com
mailto:eithephyu@gmail.com


components can be truly distributed, and not 

dependent on a centralized application server that 

provides a host of distributed middleware services.  

 Several researches have been used mobile agent 

in developing parallel applications on the Web using  

Java mobile agents and Java threads. [1, 9, 10] 

Mobile agents are being used already in a variety of 

Internet-based distributed computing applications: 

web database [8] cooperative environment [8, 9], and 

information gathering systems [6], electronic 

commerce systems [1] and so on.    
 

3. Background Theory 
 

As shown in figure 1, a mobile agent is a 

program which represents a user in computer network 

and is capable of migrating autonomously from one 

host to another to perform the computation on behalf 

of the user.  

 

 

 

 

 

 

 

 
Figure 1. Mobile Agent Technology 

 

They can roam the network either on a 

predetermined path or one that the agents themselves 

determine based on dynamically gathered 

information. Having accomplished their goals, the 

agent may return to their “home site” in order to 

report their result to the user. [2] 
 

3.1 Parallel Computation Models 
 

 Parallel computation [5] consists of dividing a 

problem into parts in which separate processors 

perform the computation of the parts through use of 

parallelism.  
 

3.1.1Embarrassingly Parallel Computation Model 
 

 In embarrassingly parallel computation, each 

process requires different or the same data and 

produces results from its input without any need for 

results from other processes. A computation can be 

divided into a number of completely independent 

parts, each of which can be executed by a separate 

processor. A truly embarrassingly parallel 

computation suggests no communication between the 

separate processes [5]. This situation will give the 

maximum possible speedup if all the available 

processors can be assigned processes for the total 

duration of the computation. The only constructs 

required here are simply to distribute the data and to 

start the processes. In this paper, we intend to use the 

embarrassingly parallel computation model in the 

form of master-slaves pattern. The embarrassingly 

model for parallel computing is shown in figure 2. 

 

 

 

 

 

 

 

 

 
Figure 2. Embarrassingly Parallel Computation Model 
 

3.1.2 Pipelined Computation Model 
 

In pipeline computation, the problem is divided 

into a series of tasks that have to be completed one 

after the other as shown in figure 3. In fact, this is the 

basis of sequential programming [5]. Each task will 

be executed by a separate process or processor, as 

shown in Figure 3.  

 

 

 
Figure 3. Pipelined Computation Model 

 

Each stage will contribute to the overall problem 

and pass on information that is needed for subsequent 

stages. This parallelism can be viewed as a form of 

functional decomposition. The problem is divided 

into separate functions that must be performed and 

the functions are performed in succession. 

Given that the problem can be divided into a 

series of sequential tasks, the pipelined approach can 

provide increased speed under the following three 

types of computations: 

 if more than one instance of the complete 

problem is to be executed 

 if a series of data items must be processed, each 

requiring multiple operations 

 if information to start the next process can be 

passed forward before the process has completed 

all its internal operations. 

There are many problems that can be pipelined: 

adding numbers, sorting numbers, prime number 

generation and linear equations. 

 

3.1.3 Mobile Agent in Parallel Computing 
 

Mobile agents are dispatched to remote site 

transparently from the user based on the parallel 

computation model. For parallel computing, master 

agent starts and dynamically creates and, initiates 

identical slave or worker agents. And then the master 

agent dispatches a variable number of mobile 

(worker) agents to several workstations to work in 

parallel. This system intends to use master-worker 

P1 P1 P1 P1 

Send Initial Data - - - - - - - - - - - - - - - - - - -  Complete 

Result 

Master 

Workers 

Message 

Aglet Server Aglet Server 

Mobile  

Agent 

Master 

Agent 

Dispatch 

Send Result 



model of parallel computing. The responsibilities of 

master-worker agents are [5]: 

 A master agent creates a number of worker 

agents. 

 The workers initiate their tasks and data. 

 The worker moves to a remote host and perform 

task. 

 The worker sends the partial results of the task to 

the master. 

 The worker disposes of itself. 
 

4. Proposed System 
 

Main Agent
Task 

Manager

Resource 

Manager
User

Host 1 Host 2 Host n  
Figure 4. Overview of the System 

 

 The overview of the proposed system is shown 

in figure 4. When the user inputs the equations into 

the system, the main agent accepts this system of 

equations. And it sends these equations to task 

manager agent. When the task manager agent accepts 

the system of equations, this agent checks the number 

of resources required for solving these equations and 

requests the resource manager agent for the resource 

lists. Then the task manager agent creates a number 

of worker mobile agents and assigns task to them. On 

creating of worker mobile agent, this agent accepts 

the data and task from task manager agent and goes 

to resource (host) for calculation. After calculation, it 

returns the partial result to the task manager agent. 

The task manager agent collects this partial result to 

produce the final complete result. 

 Agents used in this system are: 

 Register mobile agent 

 Main agent 

 Resource Manager agent 

 Task Manager (Master) agent 

 Worker mobile agents 
 

4.1 Register Mobile Agent 
 

The register mobile agent is used to register a 

computing resource (workplace or the address of the 

resource) to the server. The algorithm for this agent is 

as shown in figure 5. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. Algorithm for Register Mobile Agent 
 

4.2 Main Agent 
 

The main task of this agent is to interact with the 

user and to coordinate the task manager agent. It 

accepts the input equations from the user. This paper 

intends to use Gauss Jordan Iteration method as a 

case study. These equations are sent to Task manager 

for parallel calculation and the final result will be 

displayed to the user by this agent. The algorithm for 

this agent is as shown in figure 6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6. Algorithm for Main Agent 

 

4.3 Resource Manager Agent  
  

Resource 

Manager

Register Mobile Agent

Task 

Manager

 
Figure 7. Resource Manager Agent 

   

  This agent accepts the register request from the 

workstations and stores the workstation list in the 

database. This list is provided to the Task manager 

for parallel computation. (see Figure 7) The 

algorithm for this agent is shown in figure 8. 

 

class RegisterAgent extends Aglet{ 

 void onCreation(){ 

  host = getHomeAddress(); 

  Message msg = new Message(“Register”); 

  msg.setArg(“Host”,host); 

  this.dispatch( /*Server URL */); 

 }   

 void onArrival(){ 

  call_ResourceManager(msg); 

 } 

} 

 

class MainAgent extends Aglet{ 

 void onCreation(){ 

  showFormDesign(); 

  getInput(); 

  create_TaskManagerAgent(user Input);  

 } 

 void handleMessage( Message msg ) { 

  if (msg == “show”){ 

   showResult();  

  } else if (msg == “InvalidEqt”){ 

      showInvalidEqt(); 

  }  

 }  

} 

 



 

 

 

 

 

 

 

 

 

 

 
Figure 8. Algorithm for Resource Manager Agent 

 

4.4 Task Manager Agent 
 

  This agent gets the system of equations from the 

main agent and accepts the required resources from 

the resource manager agent. And then it creates and 

sends a number of worker agents to the resources. 

The results from all worker agents are collected and 

send the final result to the main agent to display to 

the user. The algorithm for this agent is shown in 

figure 9. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 9. Algorithm for Task Manager Agent 

 

4.5 Worker Mobile Agent 
 

  This agent accepts the task from task manager 

agent and will go to the resource to be computed. 

After the calculation their partial result is returned to 

the Task Manger agent. The algorithm for this agent 

is shown in figure 10. 

  The sequence diagram of this proposed system is 

also shown in figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 10. Algorithm for Resource Manager Agent 

 

   

 

 

 

 

 

 

 

 

 

 

 

Figure 11. The Sequence Diagram of the System 

 

5. Experimental Result 
 

 In this study, we test the system of equations 

such as: 

  X1 - X2 + 3X3+ 2X4 = 15 

 - X1 + 5 X2 -5 X3- 2X4 = -35 

 3 X1 -5 X2 + 19X3+ 3X4 = 94 

 2 X1 -2 X2 + 3X3+ 21X4 = 1 

 After accepting the resource list from resource 

manager agent, the task manager agent firstly creates 

three mobile worker agents and sends them to 

respective server for calculation in parallel. After 

collecting the partial results from the mobile workers, 

the task manager agent calculates the final result and 

then sends to Main agent to display to the user. The 

execution time with three worker agents is 1400 ms. 

And then the task manager agent creates four mobile 

worker agents for the same equations. We also mark 

the execution time. Finally, task manager agent 

creates five mobile worker agents and tests the same 

equations. Final output result is the same and 

execution time is reduced. So, the large amount of 

agents is used, the execution time will reduce. 

 In this example, the final results are X1= 2, X2= -

3, X3= 4, X4= -1. The time comparison of this 

experimental results is shown in figure 12. 

 

class ResourceManager extends Aglet{ 

 handleMessage( Message msg ) { 

  if (msg == “Register”){ 

           insertDB(msg.getArg(“Host”));  

  } else if (msg == “getResource”){ 

           resource[]=getResource (n); 

           return resource; 

  }  

 } 

} 

 

class TaskManager extends Aglet{ 

 void onCreation(UserInput from MainAgent){ 

  getUserInputEquation(); 

   rm=create_ResourceManagerAgent(); 

  resource[] = rm.setMsg(“getResource”, n); 

  GaussJordan(); 

 } 

} 

 

void GaussJordan(){ 

 A[][] = get A matrix for the equation Ax=b; 

 for j=1 to n do 

  for i=1 to n do in parallel //create worker agents 

   if i!= j then  send (A,j,i,n,resource[i]); 

  end for 

 

  wait for allReply(); 

 end for 

 

 for i=1 to n do // finding final result value 

  x[i] = a[i][n+1] / a[i][i]; 

 end for  

}  

 

class WorkerGJ extends Aglet{ 

 void onCreation(){ 

  get A,j,i,n; 

  go to resource[i]; 

 } 

 void onArrival(){ 

  for k = j to n+1 do 

   a[i][k] = a[i][k] – (a[i][j] / a[j][j]) a[j][k]; 

  end for; 

  send A; 

 } 

} 

 

getResource() 

:User :Resource :Main agent :Task Manager :Resource Manager 

Register(address) 

Task() getEqt() 

Resource[] 

sendTask() 

partialResult 

sendResult() 
 displayResult() 

Task(eqt) 



 
 
 

Figure 12. Performance Comparison of  

Experimental Results 

 

6. Conclusion 
 

The mobile agent is an emerging infrastructure 

for high performance computing, and parallel and 

distributed computing is also the efficient computing. 

In this paper, the methodology, tools and applications 

of agent-based computing for parallel models are 

presented. By using this system, numerical system of 

equations can be solved by using Gauss Jordan 

Iteration method. With the help of mobile agents, 

these problems can be solved in parallel on different 

processors. 

The mobile agent successfully dispatched to the 

destination hosts performed the parallel computing as 

expected when tested from MAT. As an agent was 

able to meet the client at a given acceptor site and it 

could also do the job assigned to it at the nominated 

host autonomously. Moreover, if the large amount of 

mobile agents is used for the computing, their 

execution time can be reduced. The more the large 

amount of mobile agents used, the smaller the 

execution time. 

 

6. References 
 

[1] B.Wilkinson  and M. Allen.  “Parallel  Programming.” 

Prentice hall, Upper Saddle River, NJ, 1999.  

 

[2] C. G. Harrison, D. M. Chess, and Kershenbaum, A. 

“Mobile Agents: Are they a good idea?”, Technical report, 

IBM T. J. Watson Research Center, March 1995. 

 

[3] D. B. Lange and M. Oshima, “Seven Good Reasons for 

Mobile Agents”, Communications of the ACM, Vol.42, 

No.3, 1999. 

 

[4] Hnin Aye Thant, “Efficient Load Balancing Method for 

Cluster Based Parallel Applications Using Mobile Agents”, 

in Proceedings of 3rd International Conference on 

Computer Applications, March 9-10-2005, Myanmar, 

 

[5] Khin Marlar Tun and Thinn Thu Naing, “Parallel and 

Distributed Computing Models for Mobile Agent”, in 

Proceedings of 2nd International Conference on Computer 

Application 04, January 8, 2004, Myanmar. 

[6] Prof. A R Yardi, U.P.Kulkarni, and S.R.Mangalwede. 

“A Mobile Agent Technology for Internet Applications.” 

International Conference on Computers, Controls, and 

Communication, INCON.CCC 2004, Chennai, India. 

 

[7] S. G. Aki, “The Design and Analysis of Parallel 

Algorithms”, Kingston, Ontario, 1989. 

 

[8] S. Papastavrou, G. Samaras and E. Pitoura. “Mobile 

Agents  for  WWW  Distribted  Database  Access”, 

proceedings  of  the  15th  International Conference on Data 

Engineering, 1999.   

 

[9]  T.  Samaras,  M.  D.  Dikaiakos,  C.  Spyrou,  A. 

Liverdos, “Mobile Agent Platforms for Web Databases: A  

Qualitative  and  Quantitive  Assessment”,  proceedings  of 

first  International  Symposium  on  Agent  Systems  and 

Applications  and  third  International  Symposium  on 

Mobile Agents (ASA/MA 99), October 1999.  

 

[10]  W.  F.  Wong , L.  F.  Lau,  A.  L.  Ananda,  G.  Tan. 

“GUCHA: An  Internet-Based Parallel Computing System  

Using  Java”,  proceeding  of  4th  International  

Conference on  Algorithms  and  Architectures  for  

Parallel  Processing (ICA3PP), December 2000. 

Ex
ec

u
ti

o
n

 T
im

e

No. of Mobile Agents Used


